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Abstract the general problem of 3-D object recognition. By
This paper pesents a neel method for quidy filtering ~ analogy to the AR field, we call the process of
range data points to makobject ecagnition in lage ~ quickly filtering a 3D data set for lty points of
3D data sets feasihleThe gnerl approad, called interest “3-D cueing”.

“3D cueing’ uses shape signatas fom object models . . .
as the basis for a fast, @abilistic classification sys- Much of the verk in object recognition has

tem whit rates scene points in terms of theielikood focused on the problem of finding corresponding
of belonging to a model. This algorithm, whitould be ~ points between one data set (the “scene”) and
used as a tmt-end for any mditional 3D matbing another data set (the “model”). In particylaoint-
tedhnique is demonstted using seeral models and  based techniques use compact descriptions of local
cluttered scenes in whicthe model occupies between surface shape around each point in the scene and
1% and 50% of the data points. model (shape “signatures”) to find correspon-
1. Introduction dences. Specificallypoints with similar signatures

' are identified as candidate matches.

In this paperwe consider the problem of recogniz- Fojlowing this general approach to matching, find-
ing three-dimensional models in scenes froming correspondences iaifly efiicient when lage
range data. Mansolutions to the general problem portions of the scene and model data setslap--

of recognition from 3D free-form sufes hee 3 atreme case wuld be the recognition of an
been proposed and demonstrated gpject in a scene containing no cluttir reality

successfully3] [4] [11][13]. ~ Despite  these the sought model typically occupies only a small
advancements, heever, an issue of scalability portion gf the Scengp y P y

remains: the algorithms do not scale well taydar i ] ) ] ]
data sets with high clutter (sg6] for an analysis ~ As a result, in scenes in which the object of inter-
of the efect of clutter on recognition algorithms.) €st occupies a small percentage of the visible sur-
More precisely as the amount of clutter in the face area, most of the scene pointalwated for
scene increases, 3-D matching techniques tend t6ecognition are rejected. In otheows, the recog-
break davn, either because thare unable to rep- hition system may spend most of its time testing
resent masge amounts of scene data, or becausepoints that are clearly dissimilar to the object of
of fundamental combinatorial limitations inherent interest. Ir example, consider the task of recog-
to their algorithms. A solution to this problem is to Nizing the U-shaped pipe fitting in the left scene of
use a &st pre-processing step whiclowld elimi-  Figure2. It should be oldous, without going
nate lage portions of the scene from consideration through a comple matching procedure, that the
by the matching algorithm. Although such a pre- points on the adjacent flat saces cannot belong
processing step ould reduce the ork of the rec- 10 the model, which is cued at all points. There-

ognition system, it wuld by no means sesvas a  fore, a 3-D cueing algorithm should filter the
substitute. points in the scene based on the similarity between

: : .. their local surice shapes and the local shapes of
The notion of pre-processing scene dataatlif points on the model swte.

tate recognition is, of course, well-kmo in the o _ _
field of ATR (Automatic Rrget Recognition) in  Our approach to cueing is to summarize all the sig-
which fast so-called “cueing” algorithms are used naturesX; from the model into a classifiérsuch

to reduce the lge amount of data in an input thatf(X) estimates the probability that a signature
image to a f& regions in which the tget has a X belongs to the model. Prior taezuting a pre-
high probability of being found (e.g.[11]). cise matching algorithm, the classifier \&keiated
Although such ‘an approach is common farRA ~ On an initial selection of points in the scene and
from intensity images, it has not been applied toonly those points to which the classifier assigns



high probability are considered further for recogni-perform optimally in terms af, however, if half of

tion (Figurel). the scene consists of model points, the filter clearly
does not hee a beneficial éct for our recognition
system. Huwever, in the results that follg, the
points positiely labelled by the classifier consist
of a reasonable percentage of thegearobjects
points; for this reason we do not concern oueselv
with the question of he completely the filter
“covers” the model instance.

Obviously, the performance of the classifier
degrades in scenes containing multiple instances of
very similar surdces. Nonetheless, it shouldvee
perform worse than a random point selection
scheme; in other @rdsp’ should alvays be greater
thanp. Figure2 illustrates this point. In the scene
on the left, the object of interest (the U-shaped
pipe) is \ery different from the other object in the
scene. In this case, the cueing procedure success-
fully eliminates most of the points from the scene
that are outside the desired object. On the other
o hand, the scene on the right contains moreezlirv
probability objects whose siwates are similar to that of the
Figure 1. General approach to cueing. model; as a result, the classifier retains more clutter

e oints in the scene. Mertheless, in both cases, the
The performance of the classifier igakiated by get of atraneous points to be considered for

computing the ratio of the percentage of points cor: atching is decreased substantiaty¢ 1), thus

rectly classified as model points to the percentagg e .
of the scene that consisted of true model point permitting faster and more successful matching.

Formally, if N, is the number of model points in
the scene according to ground truth,is the num-
ber of clutter points in the scen¥,,, is the number
of scene points that were correctly classified a
model points, andN’; is the number of scene
points incorrectly classified as model points (i.e
points in clutter areas), then we define the perfo
mance of the classifier by the ratie p'/p, where
P’ =N /(N'.+ N andp = N, /(N. + Nyp). A high
value forr indicates that a lge number of true
model points are considered for matching, redati Figure2. Two examples of 3-D cueing (points retained by the

fo the number of dtter points considered Ui e S, by boang s Vo Sl
gg?r:?sgj’e(tgr?]irzggo bc;,f ttrr]lée r([)ncc())%ili ti%?]méisigrﬁl#gerpojints are reta.ined b)écause of gmilarws in t.he sc.ene.

times what it wuid hae been if points were Inthe remainder of the papeve first briefly intro-
picked randomly from the scene. If cueing is per-duce the shape signature representation used as the
formed flavlessly all the points selected by the fil- basis for our cueing approach. This representation,
ter would lie on the model; therefortp is the originally introduced by Johnsdf], is only
maximum \alue ofr. Quantitatiely, our goal is to  briefly described here; we refer the reader inter-

design adst point classifiesuch that: ested in a complete treatment {@0] and [8].
Based on this representation we then describe the

* The classifier performs better than random cueing algorithm. Results sioour cueing classi-

classifier
}—» -«
Xq X X

. n .
model signatures scene signature

selection( = 1) in all cases. , fier in operation on comptescenes foll.
* The classifier often performs close to optimally . .
(r=1p) Although we base the cueing algorithm on a par-

ticular surfice representation, it is important to
note that this procedure is useful whether or not a
srecognition algorithm based on this representation
is used. €chniques based on feature matching
would also benefit since most of the potentially
isleading features in the background of the scene
Il be eliminated by the filter

Clearly, the ratior does not completely summarize
the critical efects of cueing; it describes\Ww@ccu-
rately the filter classifies points as model point
but not hav accurately it labels points as clutter
particular if the cueing algorithmxamines all the
points in a particular scene and selects one solitaw
point as a model point, therl/p if that point is '
truly on the model, and the classifier may be said to



2. Algorithm scene, so uniform distiitions P(i — A) and P(X;)

are assumed. This reduces the problem to finding
In order to dficiently filter data points based on 3D the scene pointsmaximizing P(X;|i - A), i.e. the
models, we ta& a probabilistic classification maximum likelihood lypotheses of - A given x,
approach similar to those &k to sole machine over alli’s.
learning problems. The classifier wevbalesigned . L
is firstgtr%ined to recognize model points%]; then Thus, it follavs that spin images from the gat
given a data point from a scene, the classifier pre2Piect model should be analyzed to compalees
dicts whether or not the scene point is part of a@f P(Xig - A). It would not be feasible, aver,
instance of the object model by assigning it a probl® base cueing calculations on thae distriu-
ability of model membership. Pointsvgn high 10N of P(xji ~ A) for model points, simply
probability (i.e., abee a certain threshold) are Pecause this approach does not generalize well to
assumed to be model points and are returned as tE@"e predictions for data outside of the model.
output of the filter Irst, since .
The descriptor we lva chosen to represent local PO~ A) = P(ernX'(m’ M~ A)
surface shape, the spin image, is a discretized : o
encoding of te of the three yindrical coordi- @nd since the set of model spin images forrery v
nates of the points on the sacé surrounding a SParse setwer the sample space ¥, this joint
particular point. Specificalljor a given pointp, its ~ distribution does not generalize well to accommo-
spin imageX is a 2D array such that thelue in date deiations in spin images caused by sensor
bin X(a,) is the number of points on the sagé in  N0iSe or occlusion. In otheroads, if most of the
the neighborhood ab that are a distanoe avay bins in a scene spin image ¢an \alues that occur

from the surfice normah atp and a distanc@ N mary model spin images ub the other fe bins
along the normal fromp (Figure 3. have values which do not occur in the modedpin

images, the spin imageowld hare a lav probabil-

ity of being a model point based on the joint distri-
bution abwe, eren though the fg deviating bin
values could hze been caused by self-occlusion,
noise, or otherdctors. Een corresponding points
taken from two different scans of the same object
will have slightly varying spin images; probabili-
Figure 3. Computation of the ter signature coordinates of a fies based oremct \alues of ihe mode! distasion
pogi]nt x from apbasis poinp (from g[9]). Examples of spin P(X]i ~. A) will be sensitre t(.) these dISCI_‘e_panCIeS.
images are shan in Figure 6. More importantly computing probabilities of

o . model membership based orxaet \alues of
Spin images, created by John$8[9], provide a P(X;|i ~ A) derived from model points consists of

description of local mesh shape that is both comz ; o
pact and déctive in comveying local shape. comparing the scene spin image iery model

spin image in turn to search for axaet replica;
The probability model used by the classifier tothe purpose of cueing is precisely teoi such
assign probabilities to scene points is based on tifxhaustve searching.

spin images of model points. In this model, thegq, these reasons, we assume conditional indepen-

occurrence in the model or scene of a spin iMaggence between the mis inX:; that is, we assume
with particular bin aluesX(a,p) is treated as an !

event; the probability model attempts to describe POXi|i - A) = [ PX(m n)ji — A)
the distritution of this comple event. m, n
Let X; be the spin image associated with poiitt ~ where P(X;(m, n)|i ~ A) is the probability that bin

the scene, and let -~ A denote the ypothesis  X;(mn) in a gven spin imagex; will equal what it
that scene poiritlies on objecA. Then by Bayes’ does gven that point is on modeA. This assump-

rule, tion of conditional independence of spin image
P(Xi[i ~ A)P(i — A) pixels thus reduces our cueing method tovenai
P(i - A|X)) = X Bayesian classificatiofi].

, . . . The conditional independence assumption is a crit-
To find scene points which vathe highest proba- ica| one because it mek the computation of point
bility of belonging to a model, we wish to find the propapilities &st; using this probability model we
maximum a posteriori (MAP)ypothesesi —~ A; need only compute one probability per spin image
that is, the points which maximizeP(i - AX;).  pin and  tak their product. Furthermore, this

No data is knan about the prior probability that a5sumption helps cancel théeets of object occlu-
ary particular scene poimimay belong to a model, sjon and noise-- if a spin image bi(m,n) con-
and no data is knn a priori about the probability tains  an  urdmiliar number of points,

of a particular spin image; occurring in the P(X,(m n)|i ~ A) will be low for thatm andn; how-



ever, if most of the other spin image bins areeqi were randomly chosen as initial points for the filter
high probability the productP(X;|i - A) will still to process. Points selected by the cueing classifier
be high on agggate. Necessity and ceenience as members of the U-joint are shoin green in
do not constitute a justification of this assumptionthose figures; clearly most of the points are cor-
and in particular we & no theoretical reason to rectly classified, although aviescattered points
believe that spin image binalues vould be decor- are selected on the background objectxpsaed.
related. Havever, results reported irf1l] and [2] A series of gperiments conducted using this sen-
illustrate that a probability model which assumessor with the U-joint and other models, including
conditional independence models a nwaltiate the toy duck model shen in Figure2, is summa-
sample space surprisingly well considering theized in Figures. Here, the accurganeasure =
reduction of compbety of the probability model.  p'/p is plotted aginst p, the percentage of the
scene ceered by the desired object; the airv=

1/p is also charted to shothe \alues ofr for an
optimal classifierFor these scenesjs alvays sub-
stantially greater than it euld be if points were
selected randomlyr (= 1) and in mag cases per-
formance is close to optimal in termsrofn order

to computep’ and p, all points in input scenes
which belonged to the tget object were manually
labelled as such and points selected by the filter as
model points were compared to the true model
oint set.

For a particular pair(mn), the distrilution
P(X;(m n)|i — A) is approximated as a discrete his-
togram. During training, probabilities
P(Xi(m, n)|i -~ A) are first estimated from the spin
images of model points; forvery model spin
image v;, for every bin (mn), P(X;(mn)|i -~ A) IS
incremented by thealue ofy;(mn), and at the end,
eachP(X;(mn)|i ~ A) is dvided by the number of
model spin images that contuiied to it. Then,
when a scene point is considered during the clas
fication step, its spin image is constructed, and th
above product estimating(x;|i - A) is found by
looking upP(X;(mn)|i — A) for every bin(mn). For
numerical reasons, the probability measure com-
puted by the filter for each poinis not the actual
probability tut rather the aggeate likelihood L;,
defined as

L = —Z log(1—P(X;(m, n)|i - A))

To process a gen scene, a small percentage of its
points (usually 10%) are pied at random and
probabilities are assigned to them using the classi- &
fier. If the probability for a gien point is abee a
certain threshold, the point is labelled as belonging
to the model. Furthermore, the points that are near-
est neighbors tovery predicted model point are
considered by the filter; if a neighboring point is
labelled as a model point, its neighboring points
are analyzed, and so on. Thus, the classification
system performs a directed search of the scene,
guided by probability assignments. Scene points
nearby high-probability points are automatically
considered by the classifier so that the geometric
contiguousness of model points may bpleited:;
this leverages our assumption that if a particular
point in the scene is on the model, then the points
in its immediate neighborhood will probably be on
the model as well. - .

Figure 4. Cueing results on the u-joint model: The u-joint
3. Results mgdel is shan a% the top; the selecttjad points are displa)Jed as

e .. . . green points werlaid on 3-D displays of scenes with 2 to 5
The classification systemas first tested using a objects.

laser triangulation déce. The sensor has a maxi- In order to saluate the performance of the algo-

mum range of 3 m and measures a maximum Gk "0 more com :
: . pbe scenes with greater giee
160000 points per scano onduct early xperi f clutter we used a time-of-flight laser range

ments with the triangulation system, we trained th%nder 71 which measures points in a 30adee b
classifier on a VRML model of a PVC pipe U-joint 360—deé]r]ee field of viev withpa much Ionggedr ma>)</i—
consisting of 600 suate mesh points and placed |\ - range (up to 20m in the@mples shan in

the object in scenes withasous leel of clutter this pape) We placed the sensor in a cluttered
Figure4 shavs the U-joint model and the cueing " with' knovn objects and tested the ability of
results obtained in geral scenes containing it and the cueing svstem to find model pointaoTtanet

two to five other objects.ypical scenes contained objects w%rg used in the<aemplespsh¢yn herg' a
between 1000 and 10000 points, 10% of whichyaqiicqeer statue measuring roughly 40 cm by 30




cm by 15 cm (actually asn ornament piece!) and looks “fragmented” since only those data points
a transmission housing from @rl truck measur- whose range is belothe distance threshold are
ing 60 cm by 40 cm by 40 cm (a test object for ardisplayed. In this xample, the object occupies
application of these recognition techniques to manabout 1% of the initially selected point set and the
ufacturing problems.) Photos and 3-D models ofinal cueing accuracisr = 5.24.

these objects are shin in Figure 6. The object a—p
models contained 1,400 and 6,000 scef points ¢ .

for the transmission housing and for the deer
respectiely; spin images for each of these points
were used to create the probability models for each B
object. Experiments wolving other objects, such

as small statues, were also performed. The purpos
of these gperiments s to test the cueing under <
extreme conditions in which the object occupies
only about 1% to 5% of the scene.

20

tho primeftho
B P
°o &

[}
T

o

Figure5. Accurag results for cueing with triangulationdee

. . .. Figure 6. Two objects used forxerimentation in scenes with
Typical data sets from the range findewntaining nigh level of clutter: deer statue (left) and transmission housing

approximately 2 million data points, are first (right). Two typical spin images for each object arevamat
reduced by retaining only those points that are legsp; the points ging rise to these spin images are nedrkn
than a maximum distance, in thes@eriments 4 red on the 3D model beloand photos of the objects arewho

m, from the sensoiThis threshold is used only to Undermneat.

eliminate lage sections of completely planaalv  Figure 8 shws a similar gample obtained by tak-
in the background; althoughalls are alays cor- ing a scan of a lge scene containing three copies
rectly eliminated by the cueing procedure, weof the transmission part in tfent orientations.
wanted to concentrate on areas with highly comThe figure shas close-ups of the 3-D data of the
plex clutter to mak the data more di€ult to filter.  target objects, as well as an obliquewief the 3-D
After distance thresholding, the input data set islata. In this xample, the three objects together
further reduced to approximately 60,000 pointsoccupy 6.8% of the scene. Experiments conducted
using Garland decimation algorithn{5]. A ran- on scenes with combinations of the deer and the
dom selection of 10% of the reduced data set iFansmission part skocueing accuracbetween 2
then gven as input to the cueing program. In typi-and 7 for dificult scenes in which the objects
cal scenes, this reduced data setoed a pisical  occupy a fev percent of the total data set.

ervironment about 8 m by 8m by 2.5 m ialume. A closer gamination of the internal operation of
Figure 7 shas a result on a challenging scene conthe cueing algorithm is sk in Figure 9. Wo
taining the deerSelected points are shio as yel- points, A and B, are dran from the scene of
low dots superimposed on the intensity imageFigure 7.B belongs to the objectubA is in the
measured by the range find&ecause the range background clutteiThe graphs at the top of Figure
finder has a 360field of view, the image is a pan- 9 shav the probabilitiesP(X;(m n)|i -~ A) for each
oramic viev of the emironment surrounding the bin of the spin images & andB, calculated from
sensarThis intensity image is shm only to illus-  the deeis probability model. The tov horizontal
trate the type of scene used in thpaximents; we axes in this display are the and 3 axes of spin
emphasize that cueing of points is based on the 3-nage space; theevtical axis is the probability
range data sets. Also st in Figure 7 is a close- Value for eachq(, ) pair. From those probabilities,
up viewv of the location of the object, with the
selected points displayed in yelloon a teture-
mapped 3-D display of the corresponding portion. The \ery high resolution and Ige size of these intensity
of the scenk For reference, a 3-D wieof a lage images ma it difficult to clearly and accurately display the
portion of the scene is also included. It ididifit  projections of selected range points due to aliasifegist fr
to display the entire scene in 3-D in an intelligiblethis reason, 3D close-ups of thegetrobjects more accurately
manner; as a result, the 3-D scenawiie Figure 7  depict the distribtion of picled points on the model.




Figure7. Cueing for the plastic deer in axteeme case of clutterthe model only occupies about 1% of the sceop: Fanoramic intensity
image from range finder (selected pointsvaimdn yellon); Center: Close-up on the object; Bottom: 3-Dwigf the scene. The 3-D data
only is used for cueing; the intensity image isvehdor reference only

Figure 8. Another dificult cueing scene. The three instances of thgetarbject are highlighted in the panoramic intensity imagevsho
in two sections for reasons of space) andwhim close-up bels. The 3-D data only is used for cueing; the intensity image isrsfar
reference purposes only



the aggrgate likelihood computed foA is 362, as factor between 2 and 7. This general approach to
compared to 233 fd8. Experimentation with these range data filtering, which is independent of the
types of data sets ag limited due to restricted specific choice of object shape descriptor and prob-
access to the range finder; additiongberiments ability model, has the potential to neakraditional

will be conducted in order to more precisely quanfecognition approaches applicable tg&adata sets
tify cueing performance. Hweever, those results whose sheerolume of data may a caused the
are encouraging since theshav that in scenes techniques todil otherwise.

whose high leel of clutter precluded the applica-
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