
Abstract
This paper presents a novel method for quickly filtering
range data points to make object recognition in large
3D data sets feasible. The general approach, called
“3D cueing,” uses shape signatures from object models
as the basis for a fast, probabilistic classification sys-
tem which rates scene points in terms of their likelihood
of belonging to a model. This algorithm, which could be
used as a front-end for any traditional 3D matching
technique, is demonstrated using several models and
cluttered scenes in which the model occupies between
1% and 50% of the data points.

1. Introduction

In this paper, we consider the problem of recogniz-
ing three-dimensional models in scenes from
range data. Many solutions to the general problem
of recognition from 3D free-form surfaces have
been proposed and demonstrated
successfully[3] [4] [11] [13]. Despite these
advancements, however, an issue of scalability
remains: the algorithms do not scale well to large
data sets with high clutter (see[6] for an analysis
of the effect of clutter on recognition algorithms.)
More precisely, as the amount of clutter in the
scene increases, 3-D matching techniques tend to
break down, either because they are unable to rep-
resent massive amounts of scene data, or because
of fundamental combinatorial limitations inherent
to their algorithms. A solution to this problem is to
use a fast pre-processing step which would elimi-
nate large portions of the scene from consideration
by the matching algorithm. Although such a pre-
processing step would reduce the work of the rec-
ognition system, it would by no means serve as a
substitute.

The notion of pre-processing scene data to facili-
tate recognition is, of course, well-known in the
field of ATR (Automatic Target Recognition) in
which fast so-called “cueing” algorithms are used
to reduce the large amount of data in an input
image to a few regions in which the target has a
high probability of being found (e.g.,[11]).
Although such an approach is common for ATR
from intensity images, it has not been applied to

the general problem of 3-D object recognition. By
analogy to the ATR field, we call the process of
quickly filtering a 3D data set for likely points of
interest “3-D cueing”.

Much of the work in object recognition has
focused on the problem of finding corresponding
points between one data set (the “scene”) and
another data set (the “model”). In particular, point-
based techniques use compact descriptions of local
surface shape around each point in the scene and
model (shape “signatures”) to find correspon-
dences. Specifically, points with similar signatures
are identified as candidate matches.

Following this general approach to matching, find-
ing correspondences is fairly efficient when large
portions of the scene and model data sets overlap--
an extreme case would be the recognition of an
object in a scene containing no clutter. In reality,
the sought model typically occupies only a small
portion of the scene.

 As a result, in scenes in which the object of inter-
est occupies a small percentage of the visible sur-
face area, most of the scene points evaluated for
recognition are rejected. In other words, the recog-
nition system may spend most of its time testing
points that are clearly dissimilar to the object of
interest. For example, consider the task of recog-
nizing the U-shaped pipe fitting in the left scene of
Figure2. It should be obvious, without going
through a complex matching procedure, that the
points on the adjacent flat surfaces cannot belong
to the model, which is curved at all points. There-
fore, a 3-D cueing algorithm should filter the
points in the scene based on the similarity between
their local surface shapes and the local shapes of
points on the model surface.

Our approach to cueing is to summarize all the sig-
naturesXi from the model into a classifierf such
that f(X) estimates the probability that a signature
X belongs to the model. Prior to executing a pre-
cise matching algorithm, the classifier is evaluated
on an initial selection of points in the scene and
only those points to which the classifier assigns
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high probability are considered further for recogni-
tion (Figure1).

Figure 1. General approach to cueing.

The performance of the classifier is evaluated by
computing the ratio of the percentage of points cor-
rectly classified as model points to the percentage
of the scene that consisted of true model points.
Formally, if Nm is the number of model points in
the scene according to ground truth,Nc is the num-
ber of clutter points in the scene,N’m is the number
of scene points that were correctly classified as
model points, andN’c is the number of scene
points incorrectly classified as model points (i.e.
points in clutter areas), then we define the perfor-
mance of the classifier by the ratior = ρ’/ρ, where
ρ’ = N’m/(N’c + N’m) andρ = Nm/(Nc + Nm). A high
value for r indicates that a large number of true
model points are considered for matching, relative
to the number of clutter points considered; using
cueing, the ratio of true model points to clutter
points examined by the recognition system isr
times what it would have been if points were
picked randomly from the scene. If cueing is per-
formed flawlessly, all the points selected by the fil-
ter would lie on the model; therefore1/ρ is the
maximum value ofr. Quantitatively, our goal is to
design a fast point classifiersuch that:

•  The classifier performs better than random
selection (r = 1) in all cases.

•  The classifier often performs close to optimally
(r = 1/ρ.)

Clearly, the ratior does not completely summarize
the critical effects of cueing; it describes how accu-
rately the filter classifies points as model points,
but not how accurately it labels points as clutter. In
particular, if the cueing algorithm examines all the
points in a particular scene and selects one solitary
point as a model point, thenr=1/ρ if that point is
truly on the model, and the classifier may be said to

perform optimally in terms ofr; however, if half of
the scene consists of model points, the filter clearly
does not have a beneficial effect for our recognition
system. However, in the results that follow, the
points positively labelled by the classifier consist
of a reasonable percentage of the target object’s
points; for this reason we do not concern ourselves
with the question of how completely the filter
“covers” the model instance.

Obviously, the performance of the classifier
degrades in scenes containing multiple instances of
very similar surfaces. Nonetheless, it should never
perform worse than a random point selection
scheme; in other wordsρ’ should always be greater
thanρ. Figure2 illustrates this point. In the scene
on the left, the object of interest (the U-shaped
pipe) is very different from the other object in the
scene. In this case, the cueing procedure success-
fully eliminates most of the points from the scene
that are outside the desired object. On the other
hand, the scene on the right contains more curved
objects whose surfaces are similar to that of the
model; as a result, the classifier retains more clutter
points in the scene. Nevertheless, in both cases, the
set of extraneous points to be considered for
matching is decreased substantially (r >> 1), thus
permitting faster and more successful matching.

Figure 2.  Two examples of 3-D cueing (points retained by the
classifier are shown in red.) Left: Only the points on the target
object are retained by the cueing classifier. Right: More clutter
points are retained because of similar surfaces in the scene.

In the remainder of the paper, we first briefly intro-
duce the shape signature representation used as the
basis for our cueing approach. This representation,
originally introduced by Johnson[9], is only
briefly described here; we refer the reader inter-
ested in a complete treatment to[10] and [8].
Based on this representation we then describe the
cueing algorithm. Results show our cueing classi-
fier in operation on complex scenes follow.

 Although we base the cueing algorithm on a par-
ticular surface representation, it is important to
note that this procedure is useful whether or not a
recognition algorithm based on this representation
is used. Techniques based on feature matching
would also benefit since most of the potentially
misleading features in the background of the scene
will be eliminated by the filter.
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2. Algorithm

In order to efficiently filter data points based on 3D
models, we take a probabilistic classification
approach similar to those taken to solve machine
learning problems. The classifier we have designed
is first trained to recognize model points; then,
given a data point from a scene, the classifier pre-
dicts whether or not the scene point is part of an
instance of the object model by assigning it a prob-
ability of model membership. Points given high
probability (i.e., above a certain threshold) are
assumed to be model points and are returned as the
output of the filter.

The descriptor we have chosen to represent local
surface shape, the spin image, is a discretized
encoding of two of the three cylindrical coordi-
nates of the points on the surface surrounding a
particular point. Specifically, for a given pointp, its
spin imageX is a 2D array such that the value in
bin X(α,β) is the number of points on the surface in
the neighborhood ofp that are a distanceα away
from the surface normaln at p and a distanceβ
along the normal fromp (Figure 3).

Figure 3. Computation of the two signature coordinates of a
point x from a basis pointp (from [9]). Examples of spin
images are shown in Figure 6.

Spin images, created by Johnson[8] [9], provide a
description of local mesh shape that is both com-
pact and effective in conveying local shape.

The probability model used by the classifier to
assign probabilities to scene points is based on the
spin images of model points. In this model, the
occurrence in the model or scene of a spin image
with particular bin valuesX(α,β) is treated as an
event; the probability model attempts to describe
the distribution of this complex event.

Let Xi be the spin image associated with pointi in
the scene, and let  denote the hypothesis
that scene pointi lies on objectA. Then by Bayes’
rule,

To find scene points which have the highest proba-
bility of belonging to a model, we wish to find the
maximum a posteriori (MAP) hypotheses ;
that is, the pointsi which maximize .
No data is known about the prior probability that
any particular scene point i may belong to a model,
and no data is known a priori about the probability
of a particular spin image  occurring in the

scene, so uniform distributions and
are assumed. This reduces the problem to finding
the scene pointsi maximizing , i.e. the
maximum likelihood hypotheses of  given
over all i’ s.

Thus, it follows that spin images from the target
object model should be analyzed to compute values
of . It would not be feasible, however,
to base cueing calculations on the exact distribu-
tion of  for model points, simply
because this approach does not generalize well to
make predictions for data outside of the model.
First, since

and since the set of model spin images form a very
sparse set over the sample space ofXi, this joint
distribution does not generalize well to accommo-
date deviations in spin images caused by sensor
noise or occlusion. In other words, if most of the
bins in a scene spin image take on values that occur
in many model spin images, but the other few bins
have values which do not occur in the model’s spin
images, the spin image would have a low probabil-
ity of being a model point based on the joint distri-
bution above, even though the few deviating bin
values could have been caused by self-occlusion,
noise, or other factors. Even corresponding points
taken from two different scans of the same object
will have slightly varying spin images; probabili-
ties based on exact values of the model distribution

 will be sensitive to these discrepancies.
More importantly, computing probabilities of
model membership based on exact values of

 derived from model points consists of
comparing the scene spin image to every model
spin image in turn to search for an exact replica;
the purpose of cueing is precisely to avoid such
exhaustive searching.

For these reasons, we assume conditional indepen-
dence between the pixels inXi; that is, we assume

where  is the probability that bin
 in a given spin image  will equal what it

does given that pointi is on modelA. This assump-
tion of conditional independence of spin image
pixels thus reduces our cueing method to naive
Bayesian classification[1].

The conditional independence assumption is a crit-
ical one because it makes the computation of point
probabilities fast; using this probability model we
need only compute one probability per spin image
bin and take their product. Furthermore, this
assumption helps cancel the effects of object occlu-
sion and noise-- if a spin image binXi(m,n) con-
tains an unfamiliar number of points,

 will be low for thatm andn; how-
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ever, if most of the other spin image bins are given
high probability, the product  will still
be high on aggregate. Necessity and convenience
do not constitute a justification of this assumption,
and in particular we have no theoretical reason to
believe that spin image bin values would be decor-
related. However, results reported in[1] and [2]
illustrate that a probability model which assumes
conditional independence models a multivariate
sample space surprisingly well considering the
reduction of complexity of the probability model.

For a particular pair (m,n), the distribution
 is approximated as a discrete his-

togram. During training, probabilities
 are first estimated from the spin

images of model points; for every model spin
image , for every bin ,  is
incremented by the value of , and at the end,
each  is divided by the number of
model spin images that contributed to it.   Then,
when a scene point is considered during the classi-
fication step, its spin image is constructed, and the
above product estimating  is found by
looking up  for every bin . For
numerical reasons, the probability measure com-
puted by the filter for each pointi is not the actual
probability but rather the aggregate likelihood Li,
defined as

To process a given scene, a small percentage of its
points (usually 10%) are picked at random and
probabilities are assigned to them using the classi-
fier. If the probability for a given point is above a
certain threshold, the point is labelled as belonging
to the model. Furthermore, the points that are near-
est neighbors to every predicted model point are
considered by the filter; if a neighboring point is
labelled as a model point, its neighboring points
are analyzed, and so on. Thus, the classification
system performs a directed search of the scene,
guided by probability assignments. Scene points
nearby high-probability points are automatically
considered by the classifier so that the geometric
contiguousness of model points may be exploited;
this leverages our assumption that if a particular
point in the scene is on the model, then the points
in its immediate neighborhood will probably be on
the model as well.

3. Results

The classification system was first tested using a
laser triangulation device. The sensor has a maxi-
mum range of 3 m and measures a maximum of
160000 points per scan. To conduct early experi-
ments with the triangulation system, we trained the
classifier on a VRML model of a PVC pipe U-joint
consisting of 600 surface mesh points and placed
the object in scenes with various level of clutter.
Figure4 shows the U-joint model and the cueing
results obtained in several scenes containing it and
two to five other objects. Typical scenes contained
between 1000 and 10000 points, 10% of which

were randomly chosen as initial points for the filter
to process. Points selected by the cueing classifier
as members of the U-joint are shown in green in
those figures; clearly most of the points are cor-
rectly classified, although a few scattered points
are selected on the background objects as expected.
A series of experiments conducted using this sen-
sor with the U-joint and other models, including
the toy duck model shown in Figure2, is summa-
rized in Figure5. Here, the accuracy measurer =
ρ’/ρ is plotted against ρ, the percentage of the
scene covered by the desired object; the curve r =
1/ρ is also charted to show the values ofr for an
optimal classifier. For these scenes,r is always sub-
stantially greater than it would be if points were
selected randomly (r = 1) and in many cases per-
formance is close to optimal in terms ofr. In order
to computeρ’ and ρ, all points in input scenes
which belonged to the target object were manually
labelled as such and points selected by the filter as
model points were compared to the true model
point set.

Figure 4. Cueing results on the u-joint model: The u-joint
model is shown at the top; the selected points are displayed as
green points overlaid on 3-D displays of scenes with 2 to 5
objects.

In order to evaluate the performance of the algo-
rithm in more complex scenes with greater degree
of clutter, we used a time-of-flight laser range
finder [7] which measures points in a 30-degree by
360-degree field of view with a much longer maxi-
mum range (up to 20m in the examples shown in
this paper.) We placed the sensor in a cluttered
room with known objects and tested the ability of
the cueing system to find model points. Two target
objects were used in the examples shown here: a
plastic deer statue measuring roughly 40 cm by 30
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cm by 15 cm (actually a lawn ornament piece!) and
a transmission housing from a Ford truck measur-
ing 60 cm by 40 cm by 40 cm (a test object for an
application of these recognition techniques to man-
ufacturing problems.) Photos and 3-D models of
these objects are shown in Figure 6. The object
models contained 1,400 and 6,000 surface points
for the transmission housing and for the deer,
respectively; spin images for each of these points
were used to create the probability models for each
object. Experiments involving other objects, such
as small statues, were also performed. The purpose
of these experiments was to test the cueing under
extreme conditions in which the object occupies
only about 1% to 5% of the scene.

Figure 5. Accuracy results for cueing with triangulation device

Typical data sets from the range finder, containing
approximately 2 million data points, are first
reduced by retaining only those points that are less
than a maximum distance, in these experiments 4
m, from the sensor. This threshold is used only to
eliminate large sections of completely planar wall
in the background; although walls are always cor-
rectly eliminated by the cueing procedure, we
wanted to concentrate on areas with highly com-
plex clutter to make the data more difficult to filter.
After distance thresholding, the input data set is
further reduced to approximately 60,000 points
using Garland’s decimation algorithm[5]. A ran-
dom selection of 10% of the reduced data set is
then given as input to the cueing program. In typi-
cal scenes, this reduced data set covered a physical
environment about 8 m by 8m by 2.5 m in volume.

Figure 7 shows a result on a challenging scene con-
taining the deer. Selected points are shown as yel-
low dots superimposed on the intensity image
measured by the range finder. Because the range
finder has a 360o field of view, the image is a pan-
oramic view of the environment surrounding the
sensor. This intensity image is shown only to illus-
trate the type of scene used in the experiments; we
emphasize that cueing of points is based on the 3-D
range data sets. Also shown in Figure 7 is a close-
up view of the location of the object, with the
selected points displayed in yellow on a texture-
mapped 3-D display of the corresponding portion
of the scene1. For reference, a 3-D view of a large
portion of the scene is also included. It is difficult
to display the entire scene in 3-D in an intelligible
manner; as a result, the 3-D scene view in Figure 7

looks “fragmented” since only those data points
whose range is below the distance threshold are
displayed. In this example, the object occupies
about 1% of the initially selected point set and the
final cueing accuracy is r = 5.24.

Figure 6. Two objects used for experimentation in scenes with
high level of clutter: deer statue (left) and transmission housing
(right). Two typical spin images for each object are shown at
top; the points giving rise to these spin images are marked in
red on the 3D model below, and photos of the objects are shown
underneath.

Figure 8 shows a similar example obtained by tak-
ing a scan of a large scene containing three copies
of the transmission part in different orientations.
The figure shows close-ups of the 3-D data of the
target objects, as well as an oblique view of the 3-D
data. In this example, the three objects together
occupy 6.8% of the scene. Experiments conducted
on scenes with combinations of the deer and the
transmission part show cueing accuracy between 2
and 7 for difficult scenes in which the objects
occupy a few percent of the total data set.

A closer examination of the internal operation of
the cueing algorithm is shown in Figure 9. Two
points, A and B, are drawn from the scene of
Figure 7.B belongs to the object, but A is in the
background clutter. The graphs at the top of Figure
9 show the probabilities  for each
bin of the spin images ofA andB, calculated from
the deer’s probability model. The two horizontal
axes in this display are theα and β axes of spin
image space; the vertical axis is the probability
value for each (α, β) pair. From those probabilities,

1. The very high resolution and large size of these intensity
images make it difficult to clearly and accurately display the
projections of selected range points due to aliasing effects. For
this reason, 3D close-ups of the target objects more accurately
depict the distribution of picked points on the model.
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Figure 7. Cueing for the plastic deer in an extreme case of clutter-- the model only occupies about 1% of the scene. Top: Panoramic intensity
image from range finder (selected points shown in yellow); Center: Close-up on the object; Bottom: 3-D view of the scene. The 3-D data
only is used for cueing; the intensity image is shown for reference only.

Figure 8. Another difficult cueing scene. The three instances of the target object are highlighted in the panoramic intensity image (shown
in two sections for reasons of space) and shown in close-up below. The 3-D data only is used for cueing; the intensity image is shown for
reference purposes only.



 the aggregate likelihood computed forA is 362, as
compared to 233 forB. Experimentation with these
types of data sets was limited due to restricted
access to the range finder; additional experiments
will be conducted in order to more precisely quan-
tify cueing performance. However, those results
are encouraging since they show that in scenes
whose high level of clutter precluded the applica-
tion of traditional matching techniques, the rapid
classifier proposed as the basic cueing mechanism
can reduce the clutter by a factor of up to seven.

Figure 9. Classification results at two different points in a
scene containing the toy deer. The probability maps and
aggregate likelihood for the two points A (rejected) and B
(accepted) are shown at the top.

Finally, our accuracy measurer does not capture
another important characteristic of the cueing algo-
rithm. Although many points still remain in the
clutter, they are mostly scattered, whereas the
points selected on the object form a compact, con-
nected group. As a result, the isolated points in the
background will be rapidly eliminated by the
matching algorithm because there are not enough
matchable points near to them. This remark is
based on a qualitative inspection of those results
and further work is needed to quantify this obser-
vation.

4. Conclusion

Further experiments will be required to completely
characterize the performance characteristics of the
cueing technique. However, the results shown here
prove that the fast data filtering procedure pre-
sented here is capable of focusing the points con-
sidered by an object recognition algorithm onto an
object of interest dramatically in reasonably clut-
tered environments in which the object of interest
covers between 5% and 50% of the scene. More-
over, in exceptionally cluttered scenes the cueing
procedure increases point selection accuracy by a

factor between 2 and 7. This general approach to
range data filtering, which is independent of the
specific choice of object shape descriptor and prob-
ability model, has the potential to make traditional
recognition approaches applicable to large data sets
whose sheer volume of data may have caused the
techniques to fail otherwise.
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